Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Effect of humeral stem design on humeral position and range of motion in reverse shoulder arthroplasty
 
research article

Effect of humeral stem design on humeral position and range of motion in reverse shoulder arthroplasty

Lädermann, Alexandre
•
Denard, Patrick J.
•
Boileau, Pascal
Show more
2015
International Orthopaedics

The impacts of humeral offset and stem design after reverse shoulder arthroplasty (RSA) have not been well-studied, particularly with regard to newer stems which have a lower humeral inclination. The purpose of this study was to analyze the effect of different humeral stem designs on range of motion and humeral position following RSA. Using a three-dimensional computer model of RSA, a traditional inlay Grammont stem was compared to a short curved onlay stem with different inclinations (155°, 145°, 135°) and offset (lateralised vs medialised). Humeral offset, the acromiohumeral distance (AHD), and range of motion were evaluated for each configuration. Altering stem design led to a nearly 7-mm change in humeral offset and 4 mm in the AHD. Different inclinations of the onlay stems had little influence on humeral offset and larger influence on decreasing the AHD. There was a 10° decrease in abduction and a 5° increase in adduction between an inlay Grammont design and an onlay design with the same inclination. Compared to the 155° model, the 135° model improved adduction by 28°, extension by 24° and external rotation of the elbow at the side by 15°, but led to a decrease in abduction of 9°. When the tray was placed medially, on the 145° model, a 9° loss of abduction was observed. With varus inclination prostheses (135° and 145°), elevation remains unchanged, abduction slightly decreases, but a dramatic improvement in adduction, extension and external rotation with the elbow at the side are observed.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

AT-1097.pdf

Access type

openaccess

Size

1.59 MB

Format

Adobe PDF

Checksum (MD5)

c588704e8800259c45b9e1944ff7d77c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés