Overview of the FTU results

Pucella, G. ; Alessi, E. ; Amicucci, L. ; Angelini, B. ; Apicella, M. L. ; Apruzzese, G. ; Artaserse, G. ; Barbato, E. ; Belli, F. ; Bertocchi, A. ; Bin, W. ; Boncagni, L. ; Botrugno, A. ; Briguglio, S. ; Bruschi, A. ; Buratti, P. ; Calabro, G. ; Cardinali, A. ; Castaldo, C. ; Causa, F. ; Ceccuzzi, S. ; Centioli, C. ; Cesario, R. ; Cianfarani, C. ; Cocilovo, V. ; Crisanti, F. ; D'Arcangelo, O. ; De Angeli, M. ; De Angelis, R. ; Di Troia, C. ; Esposito, B. ; Farina, D. ; Figini, L. ; Fogaccia, G. ; Frigione, D. ; Fusco, V. ; Gabellieri, L. ; Galperti, C. ; Garavaglia, S. ; Giovannozzi, E. ; Granucci, G. ; Iannone, F. ; Lontano, M. ; Maddaluno, G. ; Marchetto, C. ; Marinucci, M. ; Marocco, D. ; Mazzitelli, G. ; Mazzotta, C. ; Milovanov, A. ; Minelli, D. ; Mirizzi, F. C. ; Moro, A. ; Nowak, S. ; Orsitto, F. P. ; Pacella, D. ; Panaccione, L. ; Panella, M. ; Pericoli-Ridolfini, V. ; Pizzuto, A. ; Podda, S. ; Ramogida, G. ; Ravera, G. ; Romano, A. ; Sozzi, C. ; Tuccillo, A. A. ; Tudisco, O. ; Viola, B. ; Vitale, E. ; Vlad, G. ; Zanza, V. ; Zerbini, M. ; Zonca, F. ; Aquilini, M. ; Cefali, P. ; Di Ferdinando, E. ; Di Giovenale, S. ; Giacomi, G. ; Grosso, A. ; Mellera, V. ; Mezzacappa, M. ; Pensa, A. ; Petrolini, P. ; Piergotti, V. ; Raspante, B. ; Rocchi, G. ; Sibio, A. ; Tilia, B. ; Tulli, R. ; Vellucci, M. ; Zannetti, D. ; Almaviva, S. ; Canal, G. ; Caneve, L. ; Carnevale, D. ; Cavinato, M. ; Cirant, S. ; Colao, F. ; Crescenzi, F. ; Duval, B. ; Fantoni, R. ; Federspiel, L. ; Galeani, S. ; Grosso, G. ; Jakubowski, L. ; Karpushov, A. ; Kim, D. ; Lazzaro, E. ; Lyublinski, I. ; Malinowski, K. ; Martin-Solis, J. R. ; Maviglia, F. ; Mosconi, M. ; Popovic, Z. ; Rabinski, M. ; Reale, M. ; Reimerdes, H. ; Ricci, D. ; Riva, M. ; Roccella, S. ; Rossel, J. ; Sadowski, M. J. ; Sassano, M. ; Sauter, O. ; Testa, D. ; Vertkov, A. ; Wagner, D. ; Zebrowski, J.

Since the 2012 IAEA-FEC Conference, FTU operations have been largely devoted to runaway electrons generation and control, to the exploitation of the 140 GHz electron cyclotron (EC) system and to liquid metal limiter elements. Experiments on runaway electrons have shown that the measured threshold electric field for their generation is larger than predicted by collisional theory and can be justified considering synchrotron radiation losses. A new runaway electrons control algorithm was developed and tested in presence of a runaway current plateau, allowing to minimize the interactions with plasma facing components and safely shut down the discharges. The experimental sessions with 140 GHz EC system have been mainly devoted to experiments on real-time control of magnetohydrodynamic (MHD) instabilities using the new EC launcher with fast steering capability. Experiments with central EC injection have shown the onset of 3/2 and 2/1 tearing modes, while EC assisted breakdown experiments have been focused on ITER start-up issues, exploring the polarization conversion at reflection from inner wall and the capability to assure plasma start-up even in presence of a large stray magnetic field. A new actively cooled lithium limiter has been installed and tested. The lithium limiter was inserted in the scrape-off layer, without any damage to the limiter surface. First elongated FTU plasmas with EC additional heating were obtained with the new cooled limiter. Density peaking and controlled MHD activity driven by neon injection were investigated at different plasma parameters. A full real-time algorithm for disruption prediction, based on MHD activity signals from Mirnov coils, was developed exploiting a large database of disruptions. Reciprocating Langmuir probes were used to measure the heat flux e-folding length in the scrape-off layer, with the plasma kept to lay on thea internal limiter to resemble the ITER start-up phase. New diagnostics were successfully installed and tested, as a diamond probe to detect Cherenkov radiation produced by fast electrons and a gamma camera for runaway electrons studies. Laser induced breakdown spectroscopy measurements were performed under vacuum and with toroidal magnetic field, so demonstrating their capability to provide useful information on the surface elemental composition and fuel retention in present and future tokamaks, such as ITER.

Published in:
Nuclear Fusion, 55, 10, 104005
Presented at:
25th Fusion Energy Conference (FEC), Govt Russian Federat, St Petersburg, RUSSIA, OCT 13-18, 2014
Bristol, Iop Publishing Ltd

 Record created 2015-12-02, last modified 2019-08-12

Rate this document:

Rate this document:
(Not yet reviewed)