Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Sc2Ga2CuO7: A possible quantum spin liquid near the percolation threshold
 
research article

Sc2Ga2CuO7: A possible quantum spin liquid near the percolation threshold

Kumar, R.
•
Khuntia, P.
•
Sheptyakov, D.
Show more
2015
Physical Review B Condensed Matter

Sc2Ga2CuO7 (SGCO) crystallizes in a hexagonal structure (space group: P63/mmc), which can be seen as an alternating stacking of single and double triangular layers. Combining neutron, x-ray, and resonant x-ray diffraction, we establish that the single triangular layers are mainly populated by nonmagnetic Ga3+ ions (85% Ga and 15% Cu), while the bilayers have comparable population of Cu2+ and Ga3+ ions (43% Cu and 57% Ga). Our susceptibility measurements in the temperature range 1.8–400 K give no indication of any spin-freezing or magnetic long-range order (LRO). We infer an effective paramagnetic moment μeff=1.79±0.09μB and a Curie-Weiss temperature θCW of about −44 K, suggesting antiferromagnetic interactions between the Cu2+(S=1/2) ions. Low-temperature neutron powder diffraction data showed no evidence for LRO down to 1.5 K. In our specific heat data as well, no anomalies were found down to 0.35 K, in the field range 0–140 kOe. The magnetic specific heat Cm, exhibits a broad maximum at around 2.5 K followed by a nearly power law Cm∝Tα behavior at lower temperatures, with α increasing from 0.3 to 1.9 as a function of field for fields up to 90 kOe and then remaining at 1.9 for fields up to 140 kOe. Our results point to a disordered ground state in SGCO.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Kumar 15 PRB _ Sc2Ga2CuO7 A possible quantum spin liquid near the percolation threshold.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

restricted

Size

612.28 KB

Format

Adobe PDF

Checksum (MD5)

bbbc6c733f3dc8a8d6fee45187ee53c6

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés