Learning Network Structures from Firing Patterns

How can we decipher the hidden structure of a network based on limited observations? This question arises in many scenarios ranging from social to wireless and to neural networks. In such settings, we typically observe the nodes’ behaviors (e.g., the time a node learns about a piece of information, or the time a node gets infected by a disease), and we are interested in inferring the true network over which the diffusion takes place. In this paper, we consider this problem over a neural network where our aim is to reconstruct the connectivity between neurons merely by observing their firing activity. We develop an iterative NEUral INFerence algorithm NEUINF to identify the type of effective neural connections (i.e. excitatory/inhibitory) based on the Perceptron learning rule. We provide theoretical bounds on the average performance of NEUINF as well as numerical analysis to compare the performance of the proposed approach to some previous art.


Published in:
2016 Ieee International Conference On Acoustics, Speech And Signal Processing Proceedings, 699-703
Presented at:
International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, March 20-25, 2016
Year:
2016
Publisher:
New York, Ieee
ISSN:
1520-6149
ISBN:
978-1-4799-9988-0
Keywords:
Laboratories:




 Record created 2015-09-30, last modified 2018-01-28

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)