Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Heading Off Correlated Failures through Independence-as-a-Service
 
conference paper not in proceedings

Heading Off Correlated Failures through Independence-as-a-Service

Zhai, Ennan
•
Chen, Ruichuan
•
Wolinsky, David Isaac
Show more
2014
11th USENIX Symposium on Operating Systems Design and Implementation

Today's systems pervasively rely on redundancy to ensure reliability. In complex multi-layered hardware/software stacks, however – especially in the clouds where many independent businesses deploy interacting services on common infrastructure – seemingly independent systems may share deep, hidden dependencies, undermining redundancy efforts and introducing unanticipated correlated failures. Complementing existing post-failure forensics, we propose Independence-as-a-Service (or INDaaS), an architecture to audit the independence of redundant systems proactively, thus avoiding correlated failures. INDaaS first utilizes pluggable dependency acquisition modules to collect the structural dependency information (including network, hardware, and software dependencies) from a variety of sources. With this information, INDaaS then quantifies the independence of systems of interest using pluggable auditing modules, offering various performance, precision, and data secrecy tradeoffs. While the most general and efficient auditing modules assume the auditor is able to obtain all required information, INDaaS can employ private set intersection cardinality protocols to quantify the independence even across businesses unwilling to share their full structural information with anyone. We evaluate the practicality of INDaaS with three case studies via auditing realistic network, hardware, and software dependency structures.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

osdi14-final.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

902.76 KB

Format

Adobe PDF

Checksum (MD5)

21a37746452dfac046bdcfbcbcae1438

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés