Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Self Tuning Texture Optimization
 
research article

Self Tuning Texture Optimization

Kaspar, Alexandre
•
Neubert, Boris  
•
Lischinski, Dani
Show more
2015
Computer Graphics Forum

The goal of example-based texture synthesis methods is to generate arbitrarily large textures from limited exemplars in order to fit the exact dimensions and resolution required for a specific modeling task. The challenge is to faithfully capture all of the visual characteristics of the exemplar texture, without introducing obvious repetitions or unnatural looking visual elements. While existing non-parametric synthesis methods have made remarkable progress towards this goal, most such methods have been demonstrated only on relatively low-resolution exemplars. Real-world high resolution textures often contain texture details at multiple scales, which these methods have difficulty reproducing faithfully. In this work, we present a new general-purpose and fully automatic self-tuning non-parametric texture synthesis method that extends Texture Optimization by introducing several key improvements that result in superior synthesis ability. Our method is able to self-tune its various parameters and weights and focuses on addressing three challenging aspects of texture synthesis: (i) irregular large scale structures are faithfully reproduced through the use of automatically generated and weighted guidance channels; (ii) repetition and smoothing of texture patches is avoided by new spatial uniformity constraints; (iii) a smart initialization strategy is used in order to improve the synthesis of regular and near-regular textures, without affecting textures that do not exhibit regularities. We demonstrate the versatility and robustness of our completely automatic approach on a variety of challenging high-resolution texture exemplars.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

thumbnail.png

Type

Thumbnail

Access type

openaccess

License Condition

copyright

Size

757.89 KB

Format

PNG

Checksum (MD5)

02efcc42207af451c4dcd43c134d90a6

Loading...
Thumbnail Image
Name

paper.pdf

Type

Postprint

Version

Accepted version

Access type

openaccess

License Condition

copyright

Size

29.33 MB

Format

Adobe PDF

Checksum (MD5)

335c82cf2e55867047d0512ec1797be5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés