A Low Power On-Chip Class-E Power Amplifier For Remotely Powered Implantable Sensor Systems

This paper presents a low power fully integrated class-E power amplifier and its integration with remotely powered sensor system. The class-E power amplifier is suitable solution for low-power applications due to its high power efficiency. However, the required high inductance values which make the on-chip integration of the power amplifier difficult. The designed power amplifier is fully integrated in the remotely powered sensor system and fabricated in 0.18 mu m CMOS process. The power is transferred to the implantable sensor system at 13.56 MHz by using an inductively coupled remote powering link. The induced AC voltage on the implant coil is converted into a DC voltage by a passive full-wave rectifier. A voltage regulator is used to suppress the ripples and create a clean and stable 1.8 V supply voltage for the sensor and communication blocks. The data collected from the sensors is transmitted by on-off keying modulated low-power transmitter at 1.2 GHz frequency. The transmitter is composed of a LC tank oscillator and a fully on-chip class-E power amplifier. An additional output network is used for the power amplifier which makes the integration of the power amplifier fully on-chip. The integrated power amplifier with 0.2 V supply voltage has a drain efficiency of 31.5% at -10 dBm output power for 50 Omega load. The measurement results verify the functionality of the power amplifier and the remotely powered implantable sensor system. The data communication is also verified by using a commercial 50 Omega chip antenna and has 600 kbps data rate at 1 m communication distance.

Vandendriesche, S
Published in:
Bio-Mems And Medical Microdevices Ii, 9518, 951805
Presented at:
Conference on Bio-MEMS and Medical Microdevices II, Barcelona, SPAIN, MAY 05-06, 2015
Bellingham, Spie-Int Soc Optical Engineering

 Record created 2015-09-28, last modified 2020-04-20

Rate this document:

Rate this document:
(Not yet reviewed)