Studying biological membranes with extended range high-speed atomic force microscopy

High-speed atomic force microscopy has proven to be a valuable tool for the study of biomolecular systems at the nanoscale. Expanding its application to larger biological specimens such as membranes or cells has, however, proven difficult, often requiring fundamental changes in the AFM instrument. Here we show a way to utilize conventional AFM instrumentation with minor alterations to perform high-speed AFM imaging with a large scan range. Using a two-actuator design with adapted control systems, a 130 x 130 x 5 mu m scanner with nearly 100 kHz open-loop small-signal Z-bandwidth is implemented. This allows for high-speed imaging of biologically relevant samples as well as high-speed measurements of nanomechanical surface properties. We demonstrate the system performance by real-time imaging of the effect of charged polymer nanoparticles on the integrity of lipid membranes at high imaging speeds and peak force tapping measurements at 32 kHz peak force rate.

Published in:
Scientific Reports, 5, 11987
London, Nature Publishing Group

 Record created 2015-09-28, last modified 2018-03-16

Rate this document:

Rate this document:
(Not yet reviewed)