000212135 001__ 212135
000212135 005__ 20181203024013.0
000212135 0247_ $$2doi$$a10.1007/s00209-015-1471-2
000212135 022__ $$a0025-5874
000212135 02470 $$2ISI$$a000358208300031
000212135 037__ $$aARTICLE
000212135 245__ $$aThe xi-stability on the affine grassmannian
000212135 260__ $$bSpringer Heidelberg$$c2015$$aHeidelberg
000212135 269__ $$a2015
000212135 300__ $$a22
000212135 336__ $$aJournal Articles
000212135 520__ $$aWe introduce a notion of xi-stability on the affine grassmannian (SIC) for the classical groups, this is the local version of the xi-stability on the moduli space of Higgs bundles on a curve introduced by Chaudouard and Laumon. We prove that the quotient (SIC)(xi)/T of the stable part (SIC)(xi) by the maximal torus T exists as an ind-k-scheme, and we introduce a reduction process analogous to the Harder-Narasimhan reduction for vector bundles over an algebraic curve. For the group , we calculate the Poincar, series of the quotient (SIC)(xi)/T.
000212135 700__ $$g223911$$aChen, Zongbin$$0246609
000212135 773__ $$j280$$tMathematische Zeitschrift$$k3-4$$q1163-1184
000212135 909C0 $$xU10122$$0252345$$pGEOM
000212135 909CO $$pSB$$particle$$ooai:infoscience.tind.io:212135
000212135 937__ $$aEPFL-ARTICLE-212135
000212135 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000212135 980__ $$aARTICLE