Organic-inorganic-hybrid-polymer microlens arrays with tailored optical characteristics and multi-focal properties

Plano-convex microlens arrays of organic-inorganic polymers with tailored optical properties are presented. The fine-tuning of each microlens within an array is achieved by confining inkjet printed drops of the polymeric ink onto pre-patterned substrates. The lens optical properties are thus freely specified, and high numerical apertures from 0.45 to 0.9 and focal lengths between 10 μm and 100 μm are demonstrated, confirming theoretical predictions. Combining nanoimprint lithography approaches and inkjet printing enables using the same material for the microlenses and their substrates, improving the optical performances. Microlens arrays with desired specifications are printed reaching yields up to 100% and high lens reproducibility with standard deviations of the apparent contact angle under 1° and of the numerical apertures and focal lengths under 6%. Microlens arrays involving lenses with different characteristics, e.g. multi focal length, and thus focal planes separated by only few microns are printed with the same reproducibility.

Published in:
Optics Express, 23, 19, 25365-25376
Washington, Optical Society of America

Note: The status of this file is: EPFL only

 Record created 2015-09-25, last modified 2018-03-17

Publisher's version:
Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)