Targeting Optimal Design and Operation of Solar Heated Industrial Processes: A MILP Formulation

The intermittence of solar irradiation displays a great challenge for industrial applications, which often require a constant heat supply. Transient or dynamic simulation software, such as TRNSYS and EnergyPlus, enable modeling of such systems and the respective dynamic responses. Design and operation in these software packages is usually based on heuristic strategies. In this work, optimal design and operation of a solar heated industrial process with constant heating requirements is investigated based on Mixed Integer Linear Programming (MILP). The MILP model is constrained by surrogate functions that capture the main inefficiencies, but do not represent the dynamic behavior. In order to investigate the dynamic behavior and feasibility of the results from MILP, a TRNSYS model is created. In this way, the MILP model is verified and the quality of the dynamic model can be evaluated with respect to the potential non-dynamic optimum. The industrial heating requirements between 60 and 80°C are satisfied with the help of a novel High Concentration Photovoltaic Thermal System (HCPVT), a stratified thermal storage tank, and a back-up burner. The system is evaluated for Sede Boqer, Israel, and Tateno, Japan, two differently featured locations. It is concluded that the MILP formulation supplies a satisfying approximation of the system performance and, hence, may supply satisfying estimates of the system design and operation. It may also be concluded, that heuristic design and operation strategies can generate very good solutions with respect to the theoretical optimum. In this work, the system is optimized with respect to the thermal behavior and efficiency, and not the economic aspects.

Published in:
Energy Procedia, 91, 668-680
Presented at:
4th International Conference on Solar Heating and Cooling for Buildings and Industry (SHC), Istanbul, TURKEY, DEC 02-04, 2015

 Record created 2015-09-23, last modified 2019-04-27

Publisher's version:
Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)