Heracles: Improving Resource Efficiency at Scale

User-facing, latency-sensitive services, such as web-search, underutilize their computing resources during daily periods of low traffic. Reusing those resources for other tasks is rarely done in production services since the contention for shared resources can cause latency spikes that violate the service-level objectives of latency-sensitive tasks. The resulting under-utilization hurts both the affordability and energy-efficiency of large-scale datacenters. With technology scaling slowing down, it becomes important to address this opportunity. We present Heracles, a feedback-based controller that enables the safe colocation of best-effort tasks alongside a latency-critical service. Heracles dynamically manages multiple hardware and software isolation mechanisms, such as CPU, memory, and network isolation, to ensure that the latency-sensitive job meets latency targets while maximizing the resources given to best-effort tasks. We evaluate Heracles using production latency-critical and batch workloads from Google and demonstrate average server utilizations of 90% without latency violations across all the load and colocation scenarios that we evaluated.

Presented at:
42nd Intl. Symposium on Computer Architecture (ISCA), Portland, Oregon, USA, June 13-17, 2015

 Record created 2015-09-23, last modified 2019-08-12

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)