Fast Maximum Likelihood High-Density Low-SNR Super-Resolution Localization Microscopy

Localization microscopy such as STORM/PALM achieves the super-resolution by sparsely activating photo-switchable probes. However, to make the activation sparse enough to obtain reconstruction images using conventional algorithms, only small set of probes need to be activated simultaneously, which limits the temporal resolution. Hence, to improve temporal resolution up to a level of live cell imaging, high-density imaging algorithms that can resolve several overlapping PSFs are required. In this paper, we propose a maximum likelihood algorithm under Poisson noise model for the high-density low-SNR STORM/PALM imaging. Using a sparsity promoting prior with concave-convex procedure (CCCP) optimization algorithm, we achieved high performance reconstructions with fast reconstruction speed of 5 second per frame under high density low SNR imaging conditions. Experimental results using simulated and real live-cell imaging data demonstrate that proposed algorithm is more robust than previous methods in terms of both localization accuracy and molecular recall rate.


Published in:
Proceedings of the Tenth International Workshop on Sampling Theory and Applications (SampTA'13), Bremen, Federal Republic of Germany, 285–288
Year:
2013
Publisher:
SampTA
Laboratories:




 Record created 2015-09-18, last modified 2018-03-17

External links:
Download fulltextURL
Download fulltextURL
Download fulltextURL
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)