Fresnelets—A New Wavelet Basis for Digital Holography

We present a new class of wavelet bases—Fresnelets—which is obtained by applying the Fresnel transform operator to a wavelet basis of $ L _{ 2 } $ . The thus constructed wavelet family exhibits properties that are particularly useful for analyzing and processing optically generated holograms recorded on CCD-arrays. We first investigate the multiresolution properties (translation, dilation) of the Fresnel transform that are needed to construct our new wavelet. We derive a Heisenberg-like uncertainty relation that links the localization of the Fresnelets with that of the original wavelet basis. We give the explicit expression of orthogonal and semi-orthogonal Fresnelet bases corresponding to polynomial spline wavelets. We conclude that the Fresnel B-splines are particularly well suited for processing holograms because they tend to be well localized in both domains.

Published in:
Proceedings of the SPIE Conference on Mathematical Imaging: Wavelet Applications in Signal and Image Processing IX, San Diego CA, USA, 347–352

 Record created 2015-09-18, last modified 2018-12-03

External links:
Download fulltextURL
Download fulltextURL
Download fulltextURL
Rate this document:

Rate this document:
(Not yet reviewed)