Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Interface debonding driven by fluid injection in a cased and cemented wellbore: Modeling and experiments
 
research article

Interface debonding driven by fluid injection in a cased and cemented wellbore: Modeling and experiments

Lecampion, Brice  
•
Bunger, Andrew
•
Kear, James
Show more
2013
International Journal of Greenhouse Gas Control

The integrity of the wellbore completion under injection conditions is vital for the effective, long term storage of carbon dioxide. Here we experimentally demonstrate and mathematically model fluid-driven debonding of the wellbore annulus in order to provide a fundamental basis for well design. We show that self-limiting versus self-sustaining propagation of the annular debonding are distinguished by the sign of a fluid buoyancy parameter that involves a non-trivial relationship between the hydrostatic pressure variation of the fluid with depth and the clamping stress provided by the internally-pressurized casing/cement system. The theory also gives a series of scaling relationships that can be used to predict the rate of growth of the debonding and the fluid flux through the annulus for various growth regimes. The experiments confirm the theoretical predictions of debonding growth rate for the limiting case of zero-buoyancy. We also observe azimuthal debonding extending around 1/2 to 3/4 of the well annulus in the experiments, which is shown to be consistent with physical insights that can be derived from the theoretical model. We conclude that the clamping stress on the well annulus is a critical quantity for hydraulic isolation of the well, and therefore appropriate design of the casing/cement system relative to the intended injection conditions is necessary for the integrity of CO2 injection wells. © 2013 Elsevier Ltd.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.ijggc.2013.07.012
Author(s)
Lecampion, Brice  
Bunger, Andrew
Kear, James
Quesada, Daniel
Date Issued

2013

Published in
International Journal of Greenhouse Gas Control
Volume

18

Start page

208

End page

223

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
GEL  
Available on Infoscience
September 15, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/117872
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés