Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Stability of a leakage pathway in a cemented annulus
 
Loading...
Thumbnail Image
research article

Stability of a leakage pathway in a cemented annulus

Deremble, Laure
•
Loizzo, Matteo
•
Huet, Bruno
Show more
2011
Energy Procedia

The risk minimization of carbon dioxide (CO2) storage relies to some extent on well integrity assurance. While chemical reactions between the constitutive materials of the wellbore - such as cement - and stored CO 2 do not jeopardize the efficiency of a defect-free cement sheath, the reactive flow through an existing pathway in a cemented annulus may alter its initial properties, and thus change the associated risk. On one hand, the cement will react with the CO2 rich fluid, and be leached away by the leaking flow. On another hand, under specific conditions, the released minerals can re-precipitate downstream and clog the pathway. The evolution of a CO 2 leak through a pre-existing leak path in the cement sheath is examined theoretically and numerically. A numerical model of the flow has been built, that takes into account the particular physics and geometry of the problem. The governing equations are investigated in order to identify the driving mechanisms and define the dimensionless groups that rule the process, leading to a reduction in the dimension of the parameters space. We use this analysis to predict the domain of stability of the defect by extracting a general criterion corresponding to the clogging conditions. © 2010 Elsevier Ltd. © 2011 Published by Elsevier Ltd.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.egypro.2011.02.508
Author(s)
Deremble, Laure
•
Loizzo, Matteo
•
Huet, Bruno
•
Lecampion, Brice  
•
Quesada, Daniel
Date Issued

2011

Published in
Energy Procedia
Volume

4

Start page

5283

End page

5290

Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
GEL  
Available on Infoscience
September 15, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/117866
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés