Restricting representations of classical algebraic groups to maximal subgroups

Fix an algebraically closed field $K$ having characteristic $p\geq 0$ and let $Y$ be a simple algebraic group of classical type over $K.$ Also let $X$ be maximal among closed connected subgroups of $Y$ and consider a non-trivial $p$-restricted irreducible rational $KY$-module $V.$ In this thesis, we investigate the triples $(Y,X,V)$ such that $X$ acts with exactly two composition factors on $V$ and see how it generalizes a question initially investigated by Dynkin in the $1950$s and then studied by numerous mathematicians. In particular, we study the natural embeddings of $\mbox{SO}_{2n}(K)$ in both $\mbox{Spin}_{2n+1}(K)$ and $\mbox{SL}_{2n}(K)$ and obtain results on the structure of certain Weyl modules.


Directeur(s):
Testerman, Donna
Année
2015
Publisher:
Lausanne, EPFL
Mots-clefs:
Autres identifiants:
urn: urn:nbn:ch:bel-epfl-thesis6583-4
Laboratoires:




 Notice créée le 2015-09-14, modifiée le 2019-12-05

n/a:
Télécharger le document
PDF

Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)