Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Student works
  4. Online Stream Mining for Condition Monitoring in Large Infrastructure Systems
 
master thesis

Online Stream Mining for Condition Monitoring in Large Infrastructure Systems

Bouchardon, Nils Robin  
2015

Supervisory Control and Data Acquisition (SCADA) systems are nowadays widely used in modern industry. Their utility has been proven over the past decades to supervise any automated processes. The scope of applications of such a system has been extended from industrial to infrastructure and facility processes. Classic SCADA systems offer tools to help monitoring and analyzing data from this type of systems, but the existing approaches are often limited to Data Warehousing and Reporting. The main problem of these solutions is that they are not designed to work on online mode and can be seen as batch processing on archived data. In this thesis we study how to link machine learning solutions to SCADA systems on large infrastructures. The solution we propose in this work is a complete framework with its architecture providing a ’toolkit’ with different modules to build online solutions on top of a SCADA system.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

thesis_nils_bouchardon-7.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

restricted

Size

1.52 MB

Format

Adobe PDF

Checksum (MD5)

4d3cf80732c9020f80dea22128d283b8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés