Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Student works
  4. Élastodynamique linéaire pour problème géophysique et dispersion numérique
 
semester or other student projects

Élastodynamique linéaire pour problème géophysique et dispersion numérique

Favre, Julie Marthe
2015

Dans ce travail, on cherche à utiliser des méthodes capables de simuler la propagation des ondes élastiques en deux dimensions. Pour cela, nous avons utilisé les équations élastodynamiques linéaires et nous y avons appliqué des méthodes numériques. Ici, la méthode des éléments finis de Galerkin a été utilisée pour la semi-discrétisation en espace, et la discrétisation en temps a, quant à elle, été faite à l’aide des méthodes d’Euler rétrograde, Leapfrog et Runge Kutta 4. Les objectifs de ce travail consistaient tout d’abord à comparer ces méthodes en termes de convergence et de stabilité, puis d’appliquer la plus adaptée à la simulation des ondes. Cette comparaison a montré que la méthode de Runge Kutta 4 avait une condition de stabilité moins forte que celle de la méthode Leapfrog, et nous a finalement mené à choisir une méthode inconditionnellement stable, la méthode d’Euler rétrograde, pour simuler un scénario réel de propagation d’ondes sismiques en utilisant des conditions aux limites non-réfléchissantes. Les résultats concernant cette simulation semblent satisfaisants et pertinents, notamment du point de vue des conditions aux limites utilisées, qui sont apparues comme étant tout à fait appropriées. Enfin, le dernier objectif de ce travail était de procéder à une analyse de la dispersion numérique, qui nous a montré l’importance d’un haut degré polynômiale pour obtenir de bons résulats ainsi que l’influence de certains paramètres sur les erreurs obtenues.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

JulieFavre_ProjectReport.pdf

Access type

restricted

Size

2.87 MB

Format

Adobe PDF

Checksum (MD5)

d7a4eec715547da8e3c29e632ecf9c68

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés