Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition

The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding.

Published in:
Cerebral cortex (New York, N.Y. : 1991), 26, 8, 3357-3369
Cary, Oxford Univ Press Inc

 Record created 2015-08-12, last modified 2018-12-03

Rate this document:

Rate this document:
(Not yet reviewed)