Files

Abstract

The prevalent formation of noncrystalline U(IV) species in the subsurface and their enhanced susceptibility to reoxidation and remobilization, as compared to crystalline uraninite, raise concerns about the long-term sustainability of the bioremediation of U-contaminated sites. The main goal of this study was to resolve the remaining uncertainty concerning the formation mechanism of noncrystalline U(IV) in the environment. Controlled laboratory biofilm systems (biotic, abiotic, and mixed biotic abiotic) were probed using a combination of U isotope fractionation and X-ray absorption spectroscopy (XAS). Regardless of the mechanism of U reduction, the presence of a biofilm resulted in the formation of noncrystalline U(IV). Our results also show that biotic U reduction is the most effective way to immobilize and reduce U. However, the mixed biotic abiotic system resembled more closely an abiotic system: (i) the U(IV) solid phase lacked a typically biotic isotope signature and (ii) elemental sulfur was detected, which indicates the oxidation of sulfide coupled to U(VI) reduction. The predominance of abiotic U reduction in our systems is due to the lack of available aqueous U(VI) species for direct enzymatic reduction. In contrast, in cases where bicarbonate is present at a higher concentration, aqueous U(VI) species dominate, allowing biotic U reduction to outcompete the abiotic processes.

Details

Actions

Preview