Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Aeration Performances of a Gabion Stepped Weir with and without Capping
 
research article

Aeration Performances of a Gabion Stepped Weir with and without Capping

Wüthrich, Davide  
•
Chanson, Hubert
2015
Environmental Fluid Mechanics

The stepped spillway design has been used for more than 3,300 years. A simple structure is the gabion stepped weir. A laboratory study was performed herein in a large size facility. Three gabion stepped weirs were tested with and without capping, as well as a flat impervious stepped configuration. For each configuration, detailed air–water flow measurements were conducted systematically for a range of discharges. The observations highlighted the seepage flow through the gabions and the interactions between seepage and overflow. The air–water flow properties showed that the air concentration, bubble count rate and specific interface data presented lower quantitative values in the gabion stepped weir, compared to those on the impervious stepped chute, while higher velocities weremeasured at the downstream end of the gabion stepped chute. The re-oxygenation rate was deduced from the integration of the mass transfer equation using air–water interfacial area and velocity measurements. The aeration performances of the gabion stepped weir were lesser than on the flat impervious stepped chute, but for the lowest discharge. For the two configurations with step capping, the resulting flow properties were close to those on the impervious stepped configuration.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2015-1029_Wuthrich_Chanson_Aeration Performances of a Gabion Stepped Weir with and without Capping.pdf

Access type

openaccess

Size

2.45 MB

Format

Adobe PDF

Checksum (MD5)

9e56ee85a46d2222f5e0245beda2d71d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés