Files

Abstract

A key element in stretchable actuators, sensors and systems based on elastomer materials are compliant electrodes. While there exist many methodologies for fabricating electrodes on dielectric elastomers, very few succeed in achieve high-resolution patterning over large areas. We present a novel approach for the production of mechanically robust, high-resolution compliant electrodes for stretchable silicone elastomer actuators and sensors. 2 to 50 µm thick cast poly(dimethylsiloxane)(PDMS)-carbon composite layers are patterned by laser ablation and subsequently bonded to a PDMS membrane by oxygen plasma activation. The technique affords great design flexibility and high-resolution, and readily scales to large area arrays of devices. We validate our methodology by producing arrays of actuators and sensors on up to A4-size substrates, reporting on dielectric elastomer micro-scale actuators generating area strains of over 25%, and interdigitated capacitive touch sensors with high sensitivity yet insensitivity to substrate stretching. We demonstrate the ability to co-fabricate highly integrated multifunctional transducers using the same process flow, showing the methodology’s promise in realizing sophisticated and reliable complex stretchable devices with fine features over large areas.

Details

Actions

Preview