Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass

The ability of 8 picosecond pulse lasers for three dimensional direct-writing in the bulk of transparent dielectrics is assessed through a comparative study with a femtosecond laser delivering 600 fs pulses. The comparison addresses two main applications: the fabrication of birefringent optical elements and two-step machining by laser exposure and post-processing by chemical etching. Formation of self-organized nano-gratings in glass by ps-pulses is demonstrated. Differential etching between ps-laser exposed regions and unexposed silica is observed. Despite attaining values of retardance (>100 nm) and etching rate (2 um/min) similar to fs pulses, ps pulses are found unsuitable for bulk machining in silica glass primarily due to the build-up of a stress field causing scattering, cracks and non-homogeneous etching. Additionally, we show that the so-called “quill-effect”, that is the dependence of the laser damage from the direction of writing, occurs also for ps-pulse laser machining. Finally, an opposite dependence of the retardance from the intra-pulse distance is observed for fs and ps direct writing.


Published in:
Optics Express, 21, 4, 3946-3958
Year:
2013
Publisher:
Optical Society of America
ISSN:
1094-4087
Laboratories:




 Record created 2015-07-20, last modified 2018-09-13


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)