Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A detailed analysis of ambipolar diffusion in nanostructured metal oxide films
 
research article

A detailed analysis of ambipolar diffusion in nanostructured metal oxide films

Nister, David
•
Keis, Karin
•
Lindquist, Sten-Eric
Show more
2002
Solar Energy Materials and Solar Cells

A transport equation is derived which describes the behavior of the nanostructured metal oxide films in a photoelectrochem. cell. A detailed anal. of the charge compensation mechanism necessarily leads to a transport equation with characteristics similar to but logically distinct from the pure diffusion equation. The studied phenomenon was named ambipolar diffusion in the early 1950s. It takes into account the fact that the diffusion processes of ions and electrons occur at different speeds. A weak elec. field therefore couples the processes together to preserve charge neutrality. The elec. field in turn affects the transport resulting in a deviation from purely diffusive behavior. However, this was not widely recognized in the literature for nanostructured semiconductor films until very recently. A detailed anal. is presented. It is based on the assumption that the c.d. is solenoidal. Application of the ambipolar diffusion model to a photoelectrochem. cell based on a nanostructured metal oxide film leads to an addnl. term in the transport equation, rather than only a new diffusion coeff. as in earlier work. Also the boundary conditions interact closely with the equation to form a transport model.

  • Details
  • Metrics
Type
research article
DOI
10.1016/S0927-0248(02)00208-8
Author(s)
Nister, David
Keis, Karin
Lindquist, Sten-Eric
Hagfeldt, Anders  
Date Issued

2002

Published in
Solar Energy Materials and Solar Cells
Volume

73

Start page

411

End page

423

Subjects

porous film oxide ambipolar carrier diffusion photoelectrochem cell

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LSPM  
Available on Infoscience
July 6, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/115678
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés