Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A Collaborative Sensor Fusion Algorithm for Multi-Object Tracking Using a Gaussian Mixture Probability Hypothesis Density Filter
 
conference paper

A Collaborative Sensor Fusion Algorithm for Multi-Object Tracking Using a Gaussian Mixture Probability Hypothesis Density Filter

Vasic, Milos  
•
Martinoli, Alcherio  
2015
Proceedings of the IEEE International Conference on Intelligent Transportation Systems
IEEE International Conference on Intelligent Transportation Systems

This paper presents a method for collaborative tracking of multiple vehicles that extends a Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter with a collaborative fusion algorithm. Measurements are preprocessed in a detect-before-track fashion, and cars are tracked using a rectangular shape model. The proposed method successfully mitigates clutter and occlusion problems. In order to extend the field of view of individual vehicles and increase the estimation confidence in the areas where a target is observable by multiple vehicles, PHD intensities are exchanged between vehicles and fused in the Collaborative GM-PHD filter using a novel algorithm based on the Generalized Covariance Intersection. The method is extensively evaluated using a calibrated, high-fidelity simulator in scenarios where vehicles exhibit both straight and curved motion at different speeds.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

vasic_ITSC15.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

Size

1.58 MB

Format

Adobe PDF

Checksum (MD5)

cf7f29fed4caea130bcf3438abe99e85

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés