Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Development of a low-cost wireless controller for flexible sampling strategies based on real-time flow monitoring
 
conference poster not in proceedings

Development of a low-cost wireless controller for flexible sampling strategies based on real-time flow monitoring

Queloz, Pierre  
•
Besuchet, Jonathan
•
Rao, P. Suresh C.
Show more
2013
European Geosciences Union (EGU), EGU General Assembly

Even if models are able to predict more and more accurately pollutant discharge in streams, surface water sampling remains a very common practice to monitor substance concentrations and loads in streams and to calibrate models. However, as this method is temporally and spatially punctual, monitoring a whole catchment requires multiple sampling sites with time-distributed samples. Instruments are expensive, and sample collection, on-site interventions and maintenance are costly and time-consuming, in particular if the experimental site is remote. Another issue is the estimation of the discharge loads of a pollutant, especially for non-chemostatic compounds; their hydrograph-related chemical dynamics may be miss-evaluated when a rapid storm occurs using a time-paced sampling strategy with large sampling intervals. Many manufacturers provide discharge gauges (pressure probes or ultra-sonic sensors) or other instruments (rain gauge, chemical probes, etc.) that can be coupled with automatic water samplers in order to program an event-paced sampling. However, automatic samplers usually provide limited programming options that may not meet the needs of the experimenter of a specific catchment. The concept presented here proposes to use a simple microcontroller board in order to determine the timing of the samples by sending electrical pulses to a conventional automatic sampler with input capability. The flow level is measured by a low-cost ultrasonic sensor and sent to the microcontroller, which will process the signal according to user and site-custom parameters. For example, a simple power-law recession model can be apply to approximate the duration of the recession period given the maximal discharge rate measured for a storm. The sample intervals can thereafter be set in order to distribute all the bottles available over the total recession duration. The microcontroller sends a pulse (grab sample query) to the sampler at every sample time calculated by the program. A GSM/GPRS shield coupled with the microcontroller allows the data upload (flow rates, sample time, state, number of bottles available, etc.) on a web-server and can inform the experimenter by SMS about the beginning of a sampling event, a water level alert or a technical issue. This technique provides a low-cost and very flexible solution for designing advanced sampling schemes.

  • Details
  • Metrics
Type
conference poster not in proceedings
Author(s)
Queloz, Pierre  
Besuchet, Jonathan
Rao, P. Suresh C.
Rinaldo, Andrea  
Date Issued

2013

Written at

EPFL

EPFL units
ECHO  
Event nameEvent placeEvent date
European Geosciences Union (EGU), EGU General Assembly

Vienna, Austria

April 7-12, 2013

Available on Infoscience
June 23, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/115362
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés