Separating the bulk and surface n- to p-type transition in the topological insulator GeBi4-xSbxTe7

We identify the multilayered compound GeBi4Te7 to be a topological insulator with a Dirac point slightly above the valence band maximum, using angle-resolved photoemission spectroscopy (ARPES) measurements. The spin polarization satisfies the time reversal symmetry of the surface states, visible in spin-resolved ARPES. For increasing Sb content in GeBi4-xSbxTe7 we observe a transition from n to p type in bulk sensitive Seebeck coefficient measurements at a doping of x = 0.6. In surface sensitive ARPES measurements a rigid band shift is observed with Sb doping, accompanied by a movement of the Dirac point towards the Fermi level. Between x = 0.8 and x = 1 the Fermi level crosses the band gap, changing the surface transport regime. This difference of the n- to p-type transition between the surface region and the bulk is caused by band bending effects which are also responsible for a noncoexistence of insulating phases in the bulk and in the near surface region.


Published in:
PHYSICAL REVIEW B, 88, 3
Year:
2013
ISSN:
1098-0121
Laboratories:




 Record created 2015-06-23, last modified 2018-03-17


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)