Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Disambiguating Discourse Connectives for Statistical Machine Translation
 
research article

Disambiguating Discourse Connectives for Statistical Machine Translation

Meyer, Thomas  
•
Hajlaoui, Najeh
•
Popescu-Belis, Andrei
2015
IEEE/ACM Transactions on Audio, Speech and Language Processing

This paper shows that the automatic labeling of discourse connectives with the relations they signal, prior to machine translation (MT), can be used by phrase-based statistical MT systems to improve their translations. This improvement is demonstrated here when translating from English to four target languages - French, German, Italian and Arabic - using several test sets from recent MT evaluation campaigns. Using automatically labeled data for training, tuning and testing MT systems is beneficial on condition that labels are sufficiently accurate, typically above 70%. To reach such an accuracy, a large array of features for discourse connective labeling (morpho-syntactic, semantic and discursive) are extracted using state-of-the-art tools and exploited in factored MT models. The translation of connectives is improved significantly, between 0.7% and 10% as measured with the dedicated ACT metric. The improvements depend mainly on the level of ambiguity of the connectives in the test sets.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Meyer_IEEETASLP_2015.pdf

Access type

openaccess

Size

337.41 KB

Format

Adobe PDF

Checksum (MD5)

cf8ddc45fb641c054fe11edbc26ed79c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés