Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Sparse Modeling of Neural Network Posterior Probabilities for Exemplar-based Speech Recognition
 
research article

Sparse Modeling of Neural Network Posterior Probabilities for Exemplar-based Speech Recognition

Dighe, Pranay
•
Asaei, Afsaneh  
•
Bourlard, Hervé  
2016
Speech Communication

In this paper, a compressive sensing (CS) perspective to exemplar-based speech processing is proposed. Relying on an analytical relationship between CS formulation and statistical speech recognition (Hidden Markov Models HMM), the automatic speech recognition (ASR) problem is cast as recovery of high-dimensional sparse word representation from the observed low-dimensional acoustic features. The acoustic features are exemplars obtained from (deep) neural network sub-word conditional posterior probabilities. Low-dimensional word manifolds are learned using these sub-word posterior exemplars and exploited to construct a linguistic dictionary for sparse representation of word posteriors. Dictionary learning has been found to be a principled way to alleviate the need of having huge collection of exemplars as required in conventional exemplar-based approaches, while still improving the performance. Context appending and collaborative hierarchical sparsity are used to exploit the sequential and group structure underlying word sparse representation. This formulation leads to a posterior-based sparse modeling approach to speech recognition. The potential of the proposed approach is demonstrated on isolated word (Phonebook corpus) and continuous speech (Numbers corpus) recognition tasks.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Dighe_SPECOM_Sparsity_2015.pdf

Access type

openaccess

Size

2.82 MB

Format

Adobe PDF

Checksum (MD5)

3b713020382a032133f87455879c2c46

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés