Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Reactive Processing of RDF Streams of Events
 
conference paper

Reactive Processing of RDF Streams of Events

Calbimonte, Jean-Paul  
•
Aberer, Karl  
2015
Proc. of 4th International Workshop on Detection, Representation, and Exploitation of Events in the Semantic Web DeRiVE 2015
4th International Workshop on Detection, Representation, and Exploitation of Events in the Semantic Web DeRiVE 2015

Events on the Web are increasingly being produced in the form of data streams, and are present in many different scenarios and applications such as health monitoring, environmental sensing or social networks. The heterogeneity of event streams has raised the challenges of integrating, interpreting and processing them coherently. Semantic technologies have shown to provide both a formal and practical framework to address some of these challenges, producing standards for representation and querying, such as RDF and SPARQL. However, these standards are not suitable for dealing with streams for events, as they do not include the concpets of streaming and continuous processing. The idea of RDF stream processing (RSP) has emerged in recent years to fill this gap, and the research community has produced prototype engines that cover aspects including complex event processing and stream reasoning to varying degrees. However, these existing prototypes often overlook key principles of reactive systems, regarding the event-driven processing, responsiveness, resiliency and scalability. In this paper we present a reactive model for implementing RSP systems, based on the Actor model, which relies on asynchronous message passing of events. Furthermore, we study the responsiveness property of RSP systems, in particular for the delivery of streaming results.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

paper_1.pdf

Access type

openaccess

Size

1.01 MB

Format

Adobe PDF

Checksum (MD5)

9e901981a2af587a41ddcd8a674be307

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés