Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Student works
  4. Scattering coefficients for the automatic diagnosis of perinatal asphyxia
 
semester or other student projects

Scattering coefficients for the automatic diagnosis of perinatal asphyxia

Baeriswyl, Ivan Benjamin  
2015

Perinatal Asphyxia is causing the death of about 1.2 million newborn infants every year. It is one of top three causes of infant mortality in developing countries. The current way of determining the occurrence of perinatal asphyxia is by the analysis of a blood sample, something requiring medical settings and competent staff, things which often lack in rural areas of those countries. That lack usually leads into late detection of the illness, resulting into brain damages or even death of the concerned infants. The initial step of the project was to develop a prototype for the perinatal asphyxia diagnosis and reproduce the state-of-the-art results found in the literature using machine learning on infant cry samples. The next step was to try another kind of features than what was previously used and the final step was to compare the results. We designed a support vector machine (SVM)-based pattern recognition system that models patterns in the cries of known asphyxiating and non-asphyxiating infants, using Mel-frequency cepstrum coefficients (MFCC) and scattering coefficients. We had only 6 samples of distinct asphyxiating infants and thus a system has been designed to take this issue into account. For the time being, we cannot conclude anything as the database needs to be expanded. Taking into account the segmentation gives us an average accuracy of 87.5% for both the MFCCs and the scattering coefficients.

  • Details
  • Metrics
Type
semester or other student projects
Author(s)
Baeriswyl, Ivan Benjamin  
Advisors
Vetterli, Martin  
•
Scheibler, Robin  
Date Issued

2015

Subjects

Scattering coefficients

•

Machine learning

•

Perinatal asphyxia

Note

BACHELOR_SEMESTER

Written at

EPFL

EPFL units
LCAV  
Available on Infoscience
June 17, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/115202
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés