Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Modeling of Reconfigurable Medical Ultrasonic Applications in BIP
 
conference paper

Modeling of Reconfigurable Medical Ultrasonic Applications in BIP

Skalistis, Stefanos  
•
Simalatsar, Alena  
2014
Proceedings of the 5th Workshop on Medical Cyber-Physical Systems
5th Workshop on Medical Cyber-Physical Systems

Medical ultrasonic imaging applications require high quality of images produced in real-time often with limited resources available. Deadlock-freedom and confluency must be guaranteed to ensure the correctness of the applications, while feasibility and optimality properties are required to provide the best Quality of Service (QoS) within available resources. In this paper we introduce BIP (Behavior-Interaction-Priority) framework components as main building blocks to model such applications in a correct-by-construction manner. Based on those components we model a reconfigurable multi-mode processing pipeline for ultrasonic imaging that supports QoS management by topology reconfiguration. Finally, as a proof of concept, we present a simple quality controller as a well-triggered component, which when combined with the processing pipeline can manipulate the quality of image processing.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

paper.pdf

Access type

openaccess

Size

885.21 KB

Format

Adobe PDF

Checksum (MD5)

0a584aa534d7a16423a59f4e5290bba7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés