Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Hawk: Hybrid Datacenter Scheduling
 
conference paper

Hawk: Hybrid Datacenter Scheduling

Delgado, Pamela
•
Dinu, Florin  
•
Kermarrec, Anne-Marie  
Show more
July 8, 2015
Proceedings of the 2015 USENIX Annual Technical Conference
2015 USENIX Annual Technical Conference (USENIX ATC '15)

This paper addresses the problem of efficient scheduling of large clusters under high load and heterogeneous workloads. A heterogeneous workload typically consists of many short jobs and a small number of large jobs that consume the bulk of the cluster's resources. Recent work advocates distributed scheduling to overcome the limitations of centralized schedulers for large clusters with many competing jobs. Such distributed schedulers are inherently scalable, but may make poor scheduling decisions because of limited visibility into the overall resource usage in the cluster. In particular, we demonstrate that under high load, short jobs can fare poorly with such a distributed scheduler. We propose instead a new hybrid centralized/distributed scheduler, called Hawk. In Hawk, long jobs are scheduled using a centralized scheduler, while short ones are scheduled in a fully distributed way. Moreover, a small portion of the cluster is reserved for the use of short jobs. In order to compensate for the occasional poor decisions made by the distributed scheduler, we propose a novel and efficient randomized work-stealing algorithm. We evaluate Hawk using a trace-driven simulation and a prototype implementation in Spark. In particular, using a Google trace, we show that under high load, compared to the purely distributed Sparrow scheduler, Hawk improves the 50th and 90th percentile runtimes by 80% and 90% for short jobs and by 35% and 10% for long jobs, respectively. Measurements of a prototype implementation using Spark on a 100-node cluster confirm the results of the simulation.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

atc15-paper-delgado_update.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

2.25 MB

Format

Adobe PDF

Checksum (MD5)

1fb0f14f58ff4afb259a3da3766c74a9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés