Fichiers

Résumé

The support recovery problem consists of deter- mining a sparse subset of a set of variables that is relevant in generating a set of observations, and arises in a diverse range of settings such as group testing, compressive sensing, and subset selection in regression. In this paper, we provide a unified approach to support recovery problems, considering general probabilistic observation models relating a sparse data vector to an observation vector. We study the information-theoretic limits for both exact and partial support recovery, taking a novel approach motivated by thresholding techniques in channel coding. We provide general achievability and converse bounds characterizing the trade-off between the error probability and number of measurements, and we specialize these bounds the linear and 1-bit compressive sensing models. Our conditions not only provide scaling laws, but also explicit matching or near- matching constant factors. Moreover, our converse results not only provide conditions under which the error probability fails to vanish, but also conditions under which it tends to one.

Détails

Actions

Aperçu