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Abstract—The support recovery problem consists of deter-
mining a sparse subset of a set of variables that is relevant
in generating a set of observations, and arises in a diverse
range of settings such as group testing, compressive sensing, and
subset selection in regression. In this paper, we provide a unified
approach to support recovery problems, considering general
probabilistic observation models relating a sparse data vector
to an observation vector. We study the information-theoretic
limits for both exact and partial support recovery, taking a
novel approach motivated by thresholding techniques in channel
coding. We provide general achievability and converse bounds
characterizing the trade-off between the error probability and
number of measurements, and we specialize these bounds the
linear and 1-bit compressive sensing models. Our conditions not
only provide scaling laws, but also explicit matching or near-
matching constant factors. Moreover, our converse results not
only provide conditions under which the error probability fails
to vanish, but also conditions under which it tends to one.

I. INTRODUCTION

The problem of support recovery (or model selection)
consists of determining a sparse subset of variables that
are relevant in producing a set of observations, and arises
frequently in disciplines such as group testing [1], compressive
sensing (CS) [2], and subset selection in regression [3].
In this paper, we study the information-theoretic limits for
this problem, characterizing the number of measurements n
required in terms of the sparsity level k and ambient dimension
p regardless of the computational complexity.

Most of the previous works on the information-theoretic
limits of support recovery have focused on the linear model,
for which a variety of bounds are known for both exact support
recovery [4]–[8] and partial support recovery [9], [10]. In
contrast, we seek a unified approach for studying both linear
and non-linear models, motivated by the fact that the latter are
indispensable in several applications of interest.

We adopt a system model following those of a line of
works seeking mutual information characterizations of spar-
sity problems [1], [11]–[13]. We consider an approach using
thresholding techniques akin to those used in information-
spectrum methods [14], thus providing a new alternative to
previous approaches based on maximum-likelihood decoding
and Fano’s inequality. The advantages of our approach include
the following: (i) Our achievability bounds provide precise
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characterizations with explicit constants under more general
scalings of the sparsity level, signal-to-noise ratio, etc.; (ii) Our
converse results provide necessary conditions for P[error] 6→
1, as opposed to simply P[error] → 0. This distinction was
studied in [13] for discrete observation models, whereas we
also allow for continuous models.

Notation: We write βS to denote the subvector of β at
the columns indexed by S, and we write XS to denote the
submatrix of X containing the columns indexed by S. The
complement with respect to {1, . . . , p} is denoted by (·)c.
We define the function [·]+ = max{0, ·}, and write the floor
function as b·c.

II. PROBLEM SETUP AND DEFINITIONS

A. System Model

Let S be the set of subsets of {1, . . . , p} having cardinality
k. The key random variables in our setup are the support set
S ∈ S , the data vector β ∈ Rp, the measurement matrix
X ∈ Rn×p, and the observation vector Y ∈ Rn.1

The support set S is assumed to be equiprobable on the
(
p
k

)
subsets within S. Given S, the entries of βSc are determin-
istically set to zero, and the remaining entries are generated
according to some distribution βS ∼ PβS . We assume that
these non-zero entries follow the same distribution for all of
the
(
p
k

)
possible realizations of S, and that this distribution is

permutation-invariant.
The measurement matrix X is assumed to have entries that

are i.i.d. on some distribution PX . We write P kX , Pn×pX , etc. to
denote the corresponding i.i.d. distributions for vectors and
matrices. Given S, X, and β, each entry of the observation
vector Y is generated in a conditionally independent manner,
with the i-th entry Y (i) distributed according to

(Y (i)|S = s,X(i) = x(i), β = b) ∼ PY |XSβS ( · |x(i)s , bs),
(1)

for some conditional distribution PY |XSβS . We again assume
symmetry with respect to S, namely, that PY |XSβS does not
depend on the specific realization, and that the distribution
is invariant when the columns of XS and the entries of βS
undergo a common permutation. This covers a wide variety

1Here we consider entries on R for concreteness; extensions to the complex
numbers C are immediate. The case of entries on R also covers problems on
finite sets such as {0, 1}, since we are free to choose the relevant probability
distributions to be supported on these values.



of specific observation models of interest, including the linear,
1-bit, logistic, Gamma, Poisson, and group testing models.

Given X and Y, a decoder forms an estimate Ŝ of S.
Similarly to previous works, we assume that the decoder
knows the system model (including k, PβS and PY |XSβS ).
Following [9], [10], the error probability is given as follows
for some dmax ∈ {0, . . . , k − 1}:

Pe(dmax) := P
[
|S\Ŝ| > dmax ∪ |Ŝ\S| > dmax

]
. (2)

where the probability is taken over the realizations of S, β,
X, and Y (the decoder is assumed to be deterministic). This
reduces to exact support recovery when dmax = 0.

B. Joint Distributions

It will prove convenient to work with random variables that
are implicitly conditioned on a fixed value of S, say s =
{1, . . . , k}. We write Pβs and PY |Xsβs in place of PβS and
PY |XSβS to emphasize that S = s. Moreover, we define the
corresponding joint distribution

PβsXsY (bs, xs, y) := Pβs(bs)P
k
X(xs)PY |Xsβs(y|xs, bs), (3)

and its multiple-observation counterpart

PβsXsY(bs,xs,y) := Pβs(bs)P
n×k
X (xs)P

n
Y |Xsβs(y|xs, bs).

(4)
where PnY |Xsβs(·|·, bs) is the n-fold product of
PY |Xsβs(·|·, bs).

The random variables (βs, Xs, Y ) and (βs,Xs,Y) appear-
ing throughout this paper are distributed as

(βs, Xs, Y ) ∼ PβsXsY (5)
(βs,Xs,Y) ∼ PβsXsY, (6)

with the remaining entries of the measurement matrix being
distributed as Xsc ∼ P

n×(p−k)
X , and with βsc = 0 deter-

ministically. Note that these distributions may be probability
mass functions (discrete case), probability density functions
(continuous case), or combinations of the two.

C. Information-Theoretic Definitions

Our framework treats the support recovery problem as a
channel coding problem over a mixed channel [14, Sec. 3.3],
where the input-output relation is conditionally i.i.d. given βs.

As in [1], [12], we consider partitions of the support set
s ∈ S into two sets sdif 6= ∅ and seq. We will see that seq
corresponds to an overlap between s and some other set s
(i.e. s ∩ s), whereas sdif corresponds to the indices in one
set but not the other (e.g. s\s). There are 2k − 1 ways of
performing such a partition (the subtraction of one being due
to the condition that sdif is non-empty).

For fixed s ∈ S and a corresponding pair (sdif , seq), we
introduce the notation

PY |Xsdif
Xseq

(y|xsdif
,xseq) := PY|Xs

(y|xs) (7)

PY |Xsdif
Xseqβs

(y|xsdif
, xseq , bs) := PY |Xsβs(y|xs, bs), (8)

where PY|Xs
is the marginal distribution of (4). While the

left-hand sides of (7)–(8) represent the same quantity for any

such (sdif , seq), it will prove convenient to work with these in
place of the right-hand sides. In particular, this allows us to
introduce the marginal distributions2

PY|Xseq
(y|xseq)

:=
∑
xsdif

Pn×`X (xsdif )PY |Xsdif
Xseq

(y|xsdif ,xseq) (9)

PY |Xseqβs(y|xseq , bs)

:=
∑
xsdif

P `X(xsdif )PY |XsdifXseqβs(y|xsdif , xseq , bs), (10)

where ` := |sdif |. Using the preceding definitions, we intro-
duce two information densities (in the terminology of [15]).
The first contains probabilities averaged over βs,

ı(xsdif ;y|xseq) := log
PY|Xsdif

Xseq
(y|xsdif ,xseq)

PY|Xseq
(y|xseq)

, (11)

and the second contains probabilities conditioned on βs = bs,

ın(xsdif ;y|xseq , bs) :=

n∑
i=1

ı(x(i)sdif ; y
(i)|x(i)seq , bs), (12)

where the single-letter information density is

ı(xsdif ; y|xseq , bs) := log
PY |XsdifXseqβs(y|xsdif , xseq , bs)

PY |Xseqβs(y|xseq , bs)
.

(13)
Averaging (13) with respect to the random variables in (5) con-
ditioned on βs = bs yields a conditional mutual information,
which we denote by

Isdif ,seq(bs) := I(Xsdif ;Y |Xseq , βs = bs). (14)

III. GENERAL ACHIEVABILITY AND CONVERSE BOUNDS

A. Initial Non-Asymptotic Bounds

Here we provide our main non-asymptotic upper and lower
bounds on the error probability, applying for arbitrary proba-
bilistic models satisfying the assumptions given above.

Theorem 1. (Achievability) For any constants γ and δ1 > 0,
there exists a decoder such that

Pe(dmax) ≤ P
[ ⋃
(sdif ,seq) : |sdif |>dmax

{
ın(Xsdif ;Y|Xseq , βs)

≤ log

(
p− k
`

)
+ log

(
k2

δ21

(
k

`

)2)
+ γ

}]
+ 2δ1 + P0(γ),

(15)

where ` := |sdif |, and

P0(γ) := P
[

log
PY|Xs,βs(Y|Xs, βs)

PY|Xs
(Y|Xs)

> γ

]
. (16)

2In the case that PX is continuous, the summations should be replaced by
integrals.



Theorem 2. (Converse) Fix δ1 > 0, and let (sdif(bs), seq(bs))
be an arbitrary partition of s = {1, . . . , k} with |sdif | > dmax,
depending on bs ∈ Rk. For any decoder, we have

Pe ≥ P
[
ın(Xsdif (βs);Y|Xseq(βs), βs) ≤ log

(
p− k + `

`

)
− log

dmax∑
d=0

(
p− k
d

)(
`

d

)
+ log δ1

]
− δ1, (17)

where ` := |sdif |.

In Section V, we provide brief outlines of the proofs of
these bounds. The details can be found in [16].

B. Techniques for Applying Theorems 1 and 2
The steps for applying the preceding theorems are similar,

so we focus primarily on Theorem 1.
First, it is often useful to consider a “typical” set of se-

quences of non-zero entries Tβ such that P[βs ∈ Tβ ]→ 1, thus
restricting the sequences for which the information density
ın(Xsdif

;Y|Xseq , bs) needs to be characterized.
The key idea is to bound the probabilities of the events

appearing in (15) using a concentration inequality such as
Chebyshev’s inequality or Bernstein’s inequality [17, Ch. 2].
Since ın(Xsdif

;Y|Xseq , bs) is an i.i.d. summation, it concen-
trates sharply about its mean nIsdif ,seq(bs), and hence the
corresponding tail probability in (15) is small provided that

n ≥
log
(
p−k
`

)
+ log

(
k2

δ21

(
k
`

)2)
+ γ

Isdif ,seq(bs)(1− δ2)
, (18)

where δ2 is a suitably chosen “backoff constant”.
The choice of γ and the bounding of P0 in (16) can be

done on a case-by-case basis. The examples in the present
paper use simple bounds based on Markov’s inequality and
Chebyshev’s inequality. In the case that PβS is discrete, the
choice γ = log 1

minbs PβS (bs)
yields P0 = 0.

For the converse, the analogous condition for ensuring a
probability close to one in (17) conditioned on βs = bs is

n ≤
log
(
p−k+`
`

)
− log

∑dmax

d=0

(
p−k
d

)(
`
d

)
− log δ1

Isdif ,seq(bs)(1 + δ2)
. (19)

Assuming that (i) the remainder terms resulting from the
concentration inequalities are small; (ii) the combinatorial
terms in the numerators of (18)–(19) dominate the other terms;
and (iii) both δ1 and δ2 are small, the preceding arguments lead
to simplified bounds on the error probability of the form

Pe(dmax) . P
[
n ≤ max

(sdif ,seq) : |sdif |>dmax

log
(
p−k
`

)
Isdif ,seq(βs)

]
. (20)

Pe(dmax) & P
[
n ≥ max

(sdif ,seq) : |sdif |>dmax

log
(
p−k+`
`

)
− log

∑dmax

d=0

(
p−k
d

)(
`
d

)
Isdif ,seq(βs)

]
. (21)

The maximum in (20) (achievability) arises directly,
whereas in (21) (converse) it arises by choosing the pair
(sdif(bs), seq(bs)) to achieve the maximum for each bs.

IV. APPLICATIONS TO SPECIFIC MODELS

Here we present applications of our general theorems to the
linear model and its 1-bit quantized counterpart.

A. Linear Model

The linear model is given by

Y = 〈X,β〉+ Z, (22)

where Z ∼ N(0, σ2). We let βs be i.i.d. on N(0, σ2
β), and we

assume that σ2
β =

cβ
k for some cβ > 0 not depending on p.

We consider the recovery condition (2) with

dmax = bα∗kc (23)

for some α∗ ∈ (0, 1) (not varying with p). We consider
Gaussian measurements, i.e. PX ∼ N(0, 1).

Due to space constraints, we only explain the high-level
steps in obtaining the results; see [16] for details. As men-
tioned in the previous section, we restrict our attention to a
typical set of βs vectors. This is done using the following
result, which follows in a straightforward fashion from the
Glivenko-Cantelli theorem [18, Thm. 19.1] (stating that an
empirical distribution converges uniformly to the true distribu-
tion). We define the random variable β′s to be the permutation
of βs whose entries are listed in increasing order of magnitude.

Proposition 1. For any α ∈ (0, 1), we have

lim
k→∞

1

kσ2
β

bαkc∑
i=1

(β′s)
2
i = g(α) (24)

with probability one, where

g(α) :=

∫ ∞
0

[
α− Fχ2(u)

]+
du (25)

and Fχ2 is the cumulative distribution function of a χ2 random
variable with one degree of freedom.

By a direct calculation, the mutual information in (14) is

Isdif ,seq(bs) =
1

2
log
(

1 +
1

σ2

∑
i∈sdif

b2i

)
, (26)

where W ∼ N(0, 1). Proposition 1 implies that, within a high
probability (typical) set, the minimum mutual information for
a fixed value of |sdif | = bαkc behaves as follows:

Isdif ,seq(bs)→
1

2
log
(

1 +
cβ
σ2
g(α)

)
, (27)

where we recall that cβ = kσ2
β is a constant.

Since the random variables (βs,Xs,Y) are jointly Gaus-
sian, the information densities can be written explicitly as
in [15]. Upon doing so, some standard bounding techniques
for χ2 random variables reveal that each information density
in(Xsdif ;Y|Xseq , bs) (with |sdif | > dmax) is within a multi-
plicative factor 1±δ2 of its mean nIsdif ,seq(bs) with probability
approaching one exponentially fast.

The bounding of P0 in (16) is based on Chebyshev’s
inequality; the corresponding mean and variance can again



be evaluated explicitly, since the random variables are jointly
Gaussian. We omit the details here.

Combining the above observations, we have the following
formalized statement (and simplification) of (20)–(21).

Corollary 1. Under the preceding setup for the linear model
with k → ∞, k = o(p), σ2

β =
cβ
k for some cβ > 0, and

dmax = bα∗kc for some α∗ ∈ (0, 1), we have Pe(dmax) → 0
as p→∞ provided that

n ≥ max
α∈[α∗,1]

αk log p
k

1
2 log

(
1 +

cβ
σ2 g(α)

) (1 + η) (28)

for some η > 0, where g(·) is defined in (25). Conversely,
Pe(dmax)→ 1 as p→∞ whenever

n ≤ max
α∈[α∗,1]

(α− α∗)k log p
k

1
2 log

(
1 +

cβ
σ2 g(α)

) (1− η), (29)

for some η > 0.

The numerators in (28)–(29) arise by applying Stir-
ling’s approximation to the combinatorial terms in (18)–(19)
(e.g. log

(
p−k
bαkc

)
= α(k log p

k )(1 + o(1))). These conditions
resemble those of [9], [10]; the focus therein was on linear
sparsity k = Θ(p), whereas we have considered k = o(p).

B. 1-bit Model

The 1-bit model is given by

Y = sign
(
〈X,β〉+ Z

)
. (30)

The distributions of the random variables on the right-hand
side are the same as those for the linear model. By a direct
computation, the mutual information is

Isdif ,seq(bs) = E
[
H2

(
Q

(
W

√ ∑
i∈seq b

2
i

σ2 +
∑
i∈sdif

b2i

))
−H2

(
Q

(
W

√
1

σ2

∑
i∈s

b2i

))]
, (31)

where W ∼ N(0, 1), H2 is the binary entropy function, and
Q is the Q-function. The analog of (27) is

Isdif ,seq(bs)→ Ψ(α, cβ , σ), (32)

where

Ψ(α, cβ , σ) := E
[
H2

(
Q

(
W

√
cβ(1− g(α))

σ2 + cβg(α)

))
−H2

(
Q

(
W

√
cβ
σ2

))]
. (33)

The analysis is done in the same way as above, with two
main differences. First, the information density tail probabil-
ities are bounded using Bernstein’s inequality along with the
techniques of [14, Rmk 3.1.1] for bounding the corresponding
moments. Second, P0 in (16) is bounded differently. Here
the variance of the logarithm therein is more difficult to
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Figure 1: Asymptotic thresholds on the number of measure-
ments required for partial support recovery for the linear and
1-bit models, with an allowable fraction of errors α∗ = 0.1.

characterize, so we instead surround the logarithm by | · |
and apply Markov’s inequality, using a relation between the
averages of log

PY|Xs,βs
PY|Xs

and
∣∣ log

PY|Xs,βs
PY|Xs

∣∣ from [19]. After
some further manipulations, we obtain the following.

Corollary 2. Under the preceding setup for the 1-bit model
with k → ∞, k = o(p), σ2 = Θ(1), σ2

β =
cβ
k for some

cβ > 0, and dmax = bα∗kc for some α∗ ∈ (0, 1), we have
Pe(dmax)→ 0 as p→∞ provided that

n ≥ max
α∈[α∗,1]

αk log p
k

Ψ(α, cβ , σ)
(1 + η) (34)

for some η > 0, where Ψ is defined in (33). Conversely,
Pe(dmax)→ 1 as p→∞ whenever

n ≤ max
α∈[α∗,1]

(α− α∗)k log p
k

Ψ(α, cβ , σ)
(1− η) (35)

for some η > 0.

C. Numerical Evaluations

We set α∗ = 0.1 and σ2 = 1, and define

SNRdB := 10 log
kσ2

β

σ2
= 10 log cβ , (36)

which represents the per-sample SNR in dB.
Figure 1 plots the asymptotic thresholds on the number

of measurements from Corollaries 1 and 2 with α∗ = 0.1.
More precisely, we replace the arbitrarily small constant η
by zero, and we normalize the number of measurements by
dividing by k log p

k . Note that k plays no further rule after
this normalization, and hence the plot applies to any sequence
k →∞ with k = o(p).

For both models, there is a close correspondence between
the necessary and sufficient number of measurements. Inter-
estingly, there is very little loss due to quantization in the low
SNR regime, whereas the difference between the two models is



significant in the high SNR regime. Intuitively, this is because
the number of measurements for the 1-bit model eventually
becomes limited by the quantization, and not by the noise.

V. OUTLINES OF PROOFS

A. Achievability (Theorem 1)

We fix the constants γdmax+1, . . . , γk and consider a decoder
that searches for a sparsity pattern s ∈ S such that

ı(xsdif
;y|xseq) > γ|sdif | (37)

for all partitions (sdif , seq) of s with |sdif | > dmax. If no such
s exists, then an error is declared. If multiple exist, then one
is chosen arbitrarily.

By the union bound, we have

Pe(dmax) ≤ P
[ ⋃

(sdif ,seq) :
|sdif |>dmax

{
ı(Xsdif

;Y|Xseq) ≤ γ|sdif |
}]

+
∑

s∈S\{s}
|s\s|>dmax

P
[
ı(Xs\s;Y|Xs∩s) > γ|sdif |

]
. (38)

By standard bounding techniques [14, Sec. 3.3] and count-
ing arguments [4], the second term is upper bounded by∑k
`=dmax+1

(
p−k
`

)(
k
`

)
e−γ` . The remainder of the proof in-

volves replacing the information density in (11) by that in
(12). The denominator is handled as in the analysis of mixed
channels [14, Sec. 3.3], whereas the handling of the numerator
leads to the term P0 in (16). The choice of γ` is

γ` = log

(
k

δ1

(
p− k
`

)(
k

`

))
, (39)

though an additional factor of k
δ1

(
k
`

)
also appears in (15) due

to an additional threshold that needs to be chosen similarly.

B. Converse (Theorem 2)

As has been done in several previous proofs of information-
theoretic converse bounds for sparsity pattern recovery [5],
[10], [12], we consider an argument based on a genie. The
genie reveals some of elements of the support set to the
decoder, which is left to estimate the remaining entries. An
important novelty in our arguments is that we also let the
revealed indices depend on the random non-zero entries of β.

We first condition on fixed values of the revealed indices
seq and the non-zero entries (bdif , beq); here beq contains the
entries corresponding to seq, and bdif contains the remaining
entries. The decoder is left to estimate Sdif , which is uniform
on the

(
p−k+`
`

)
subsets of {1, . . . , p}\seq of size ` = k−|seq|.

As noted by Reeves and Gastpar [10], for the criterion in
(2) we can consider without loss of generality the case that
the estimate ŝdif of sdif also has cardinality `. For any event
A(seq, bdif , beq), the genie-aided error probability satisfies

Pe(dmax, seq, bdif , beq) ≥ P[A(seq, bdif , beq)]

− P[A(seq, bdif , beq) ∩ no error] (40)

by the simple identity P[A] = P[A ∩ E ] + P[A ∩ Ec]. We fix
the constant γ` and choose

A(seq, bdif , beq) =
{
ın(XSdif

;Y|Xseq , bs) ≤ γ`
}
, (41)

where bs is deterministically constructed from (bdif , beq).
Again using standard bounding techniques and counting

arguments, the second probability in (40) can be upper

bounded by
∑dmax
d=0 (p−kd )(`d)

(p−k+`` )
eγ` . Note that the summation in

the numerator is the number of ŝdif ⊆ {1, . . . , p}\seq such
that |sdif\ŝdif | ≤ dmax for some fixed sdif .

We obtain Theorem 2 by averaging the resulting bound over
(seq, bdif , beq) and using the symmetry properties of PβS and
PY |XSβS from Section II; the functions sdif(bs) and seq(bs)
arise from the fact that we let the revealed indices depend on

the random non-zero entries. We set γ` = log
δ1(p−k+`` )∑dmax
d=0 (p−kd )(`d)

.
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