Abstract

In the inert matrix fuel concept, plutonium reprocessed from spent fuel is burned in an inert matrix, e.g. yttria-stabilized zirconia. Coming from wet reprocessing, the internal gelation can perform an easy micro-spheres production. Utilization of these particles in a sphere-pac realizes a direct fuel production. Besides being economical, this direct usage offers an almost dustless fabrication. One disadvantage of yttria-stabilized zirconia as matrix is its low thermal conductivity. A further reduction by the macroscopic structure of a sphere bed seems unacceptable. This can be eluded by the insertion of a highly conducting phase. Similar to the cermet concept with the embedment of ceramic fuel into metal, the infiltration of a fine metal fraction into a coarse ceramic fuel fraction is studied here. The initial thermal conductivity shows much higher calculated values and the sintering behaviour is also clearly enhanced compared to the pure ceramic bed.

Details