Catalytic Metal Ions and Enzymatic Processing of DNA and RNA

Two-metal-ion-dependent nucleases cleave the phosphodiester bonds of nucleic acids via the two-metal-ion (2M) mechanism. Several high-resolution X-ray structures portraying the two-metal-aided catalytic site, together with mutagenesis and kinetics studies, have demonstrated a functional role of the ions for catalysis in numerous metallonucleases. Overall, the experimental data confirm the general mechanistic hypothesis for 2M-aided phosphoryl transfer originally reported by Steitz and Steitz ( Proc. Natl. Acad. Sci. U.S.A. 1993, 90 (14), 6498-6502). This seminal paper proposed that one metal ion favors the formation of the nucleophile, while the nearby second metal ion facilitates leaving group departure during RNA hydrolysis. Both metals were suggested to stabilize the enzymatic transition state. Nevertheless, static X-ray structures alone cannot exhaustively unravel how the two ions execute their functional role along the enzymatic reaction during processing of DNA or RNA strands when moving from reactants to products, passing through metastable intermediates and high-energy transition states. In this Account, we discuss the role of multiscale molecular simulations in further disclosing mechanistic insights of 2M-aided catalysis for two prototypical enzymatic targets for drug discovery, namely, ribonuclease H (RNase H) and type II topoisomerase (topoII). In both examples, first-principles molecular simulations, integrated with structural data, emphasize a cooperative motion of the bimetal motif during catalysis. The coordinated motion of both ions is crucial for maintaining a flexible metal-centered structural architecture exquisitely tailored to accommodate the DNA or RNA sugar-phosphate backbone during phosphodiester bond cleavage. Furthermore, our analysis of RNase H and the N-terminal domain (PA(N)) of influenza polymerase shows that classical molecular dynamics simulations coupled with enhanced sampling techniques have contributed to describe the modulatory effect of metal ion concentration and metal uptake on the 2M mechanism and efficiency. These aspects all point to the emerging and intriguing role of additional adjacent ions potentially involved in the modulation of phosphoryl transfer reactions and enzymatic turnover in 2M-catalysis, as recently observed experimentally in polymerase eta and homing endonuclease I-DmoI. These computational results, integrated with experimental findings, describe and reinforce the nascent concept of a functional and cooperative dynamics of the catalytic metal ions during the 2M-dependent enzymatic processing of DNA and RNA. Encouraged by the insights provided by computational approaches, we foresee further experiments that will feature the functional and joint dynamics of the catalytic metal ions for nucleic acid processing. This could impact the de novo design of artificial metallonucleases and the rational design of potent metal-chelating inhibitors of pharmaceutically relevant enzymes.


Related material