Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Robust Gaze Estimation Based on Adaptive Fusion of Multiple Cameras
 
conference paper

Robust Gaze Estimation Based on Adaptive Fusion of Multiple Cameras

Arar, Nuri Murat  
•
Gao, Hua  
•
Thiran, Jean-Philippe  
2015
Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition
11th IEEE International Conference on Automatic Face and Gesture Recognition (FG'15)

Gaze movements play a crucial role in human-computer interaction (HCI) applications. Recently, gaze tracking systems with a wide variety of applications have attracted much interest by the industry as well as the scientific community. The state-of-the-art gaze trackers are mostly non-intrusive and report high estimation accuracies. However, they require complex setups such as camera and geometric calibration in addition to subject-specific calibration. In this paper, we introduce a multi-camera gaze estimation system which requires less effort for the users in terms of the system setup and calibration. The system is based on an adaptive fusion of multiple independent camera systems in which the gaze estimation relies on simple cross-ratio (CR) geometry. Experimental results conducted on real data show that the proposed system achieves a significant accuracy improvement, by around 25%, over the traditional CR-based single camera systems through the novel adaptive multi-camera fusion scheme. The real-time system achieves less than 0.9 degrees accuracy error with very few calibration data (5 points) under natural head movements, which is competitive with more complex systems. Hence, the proposed system enables fast and user-friendly gaze tracking with minimum user effort without sacrificing too much accuracy.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PID3551493.pdf

Access type

openaccess

Size

953.64 KB

Format

Adobe PDF

Checksum (MD5)

b64e1026d7ce2951b15f37708b3bef64

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés