Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Planck 2013 results. XXVI. Background geometry and topology of the Universe
 
research article

Planck 2013 results. XXVI. Background geometry and topology of the Universe

Ade, P. A. R.
•
Aghanim, N.
•
Armitage-Caplan, C.
Show more
2014
Astronomy & Astrophysics

The new cosmic microwave background (CMB) temperature maps from Planck provide the highest-quality full-sky view of the surface of last scattering available to date. This allows us to detect possible departures from the standard model of a globally homogeneous and isotropic cosmology on the largest scales. We search for correlations induced by a possible non-trivial topology with a fundamental domain intersecting, or nearly intersecting, the last scattering surface (at comoving distance chi(rec)), both via a direct search for matched circular patterns at the intersections and by an optimal likelihood search for specific topologies. For the latter we consider flat spaces with cubic toroidal (T3), equal-sided chimney (T2) and slab (T1) topologies, three multi-connected spaces of constant positive curvature (dodecahedral, truncated cube and octahedral) and two compact negative-curvature spaces. These searches yield no detection of the compact topology with the scale below the diameter of the last scattering surface. For most compact topologies studied the likelihood maximized over the orientation of the space relative to the observed map shows some preference for multi-connected models just larger than the diameter of the last scattering surface. Since this effect is also present in simulated realizations of isotropic maps, we interpret it as the inevitable alignment of mild anisotropic correlations with chance features in a single sky realization; such a feature can also be present, in milder form, when the likelihood is marginalized over orientations. Thus marginalized, the limits on the radius R-i of the largest sphere inscribed in topological domain (at log-likelihood-ratio Delta ln L > -5 relative to a simply-connected flat Planck best-fit model) are: in a flat Universe, R-i > 0.92 chi(rec) for the T3 cubic torus; R-i > 0.71 chi(rec) for the T2 chimney; R-i > 0.50 chi(rec) for the T1 slab; and in a positively curved Universe, R-i > 1.03 chi(rec) for the dodecahedral space; R-i > 1.0 chi(rec) for the truncated cube; and R-i > 0.89 chi(rec) for the octahedral space. The limit for a wider class of topologies, i. e., those predicting matching pairs of back-to-back circles, among them tori and the three spherical cases listed above, coming from the matched-circles search, is R-i > 0.94 chi(rec) at 99% confidence level. Similar limits apply to a wide, although not exhaustive, range of topologies. We also perform a Bayesian search for an anisotropic global Bianchi VIIh geometry. In the non-physical setting where the Bianchi cosmology is decoupled from the standard cosmology, Planck data favour the inclusion of a Bianchi component with a Bayes factor of at least 1.5 units of log-evidence. Indeed, the Bianchi pattern is quite efficient at accounting for some of the large-scale anomalies found in Planck data. However, the cosmological parameters that generate this pattern are in strong disagreement with those found from CMB anisotropy data alone. In the physically motivated setting where the Bianchi parameters are coupled and fitted simultaneously with the standard cosmological parameters, we find no evidence for a Bianchi VIIh cosmology and constrain the vorticity of such models to (omega/H)(0) < 8.1 x 10(-10) (95% confidence level).

  • Details
  • Metrics
Type
research article
DOI
10.1051/0004-6361/201321546
Web of Science ID

WOS:000345282600015

Author(s)
Ade, P. A. R.
•
Aghanim, N.
•
Armitage-Caplan, C.
•
Arnaud, M.
•
Ashdown, M.
•
Atrio-Barandela, F.
•
Aumont, J.
•
Baccigalupi, C.
•
Banday, A. J.
•
Barreiro, R. B.
Show more
Corporate authors
Planck Collaboration
Date Issued

2014

Publisher

Edp Sciences S A

Published in
Astronomy & Astrophysics
Volume

571

Start page

A26

Subjects

cosmology: observations

•

cosmic background radiation

•

cosmological parameters

•

gravitation

•

methods: data analysis

•

methods: statistical

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LPPC  
Available on Infoscience
February 20, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/111602
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés