A nanoscale gigahertz source realized with Josephson scanning tunneling microscopy

Using the AC Josephson effect in the superconductor-vacuum-superconductor tunnel junction of a scanning tunneling microscope (STM), we demonstrate the generation of GHz radiation. With the macroscopic STM tip acting as a lambda/4-monopole antenna, we first show that the atomic scale Josephson junction in the STM is sensitive to its frequency-dependent environmental impedance in the GHz regime. Further, enhancing Cooper pair tunneling via excitations of the tip eigenmodes, we are able to generate high-frequency radiation. We find that for vanadium junctions, the enhanced photon emission can be tuned from about 25 GHz to 200 GHz and that large photon flux in excess of 10(20) cm(-2) s(-1) is reached in the tunnel junction. These findings demonstrate that the atomic scale Josephson junction in an STM can be employed as a full spectroscopic tool for GHz frequencies on the atomic scale. (C) 2015 AIP Publishing LLC.

Published in:
Applied Physics Letters, 106, 1
Melville, Amer Inst Physics

 Record created 2015-02-20, last modified 2018-03-17

Rate this document:

Rate this document:
(Not yet reviewed)