Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Low-Rank Tensor Methods With Subspace Correction For Symmetric Eigenvalue Problems
 
research article

Low-Rank Tensor Methods With Subspace Correction For Symmetric Eigenvalue Problems

Kressner, Daniel  
•
Steinlechner, Michael  
•
Uschmajew, Andre  
2014
SIAM Journal On Scientific Computing

We consider the solution of large-scale symmetric eigenvalue problems for which it is known that the eigenvectors admit a low-rank tensor approximation. Such problems arise, for example, from the discretization of high-dimensional elliptic PDE eigenvalue problems or in strongly correlated spin systems. Our methods are built on imposing low-rank (block) tensor train (TT) structure on the trace minimization characterization of the eigenvalues. The common approach of alternating optimization is combined with an enrichment of the TT cores by (preconditioned) gradients, as recently proposed by Dolgov and Savostyanov for linear systems. This can equivalently be viewed as a subspace correction technique. Several numerical experiments demonstrate the performance gains from using this technique.

  • Details
  • Metrics
Type
research article
DOI
10.1137/130949919
Web of Science ID

WOS:000346123200011

Author(s)
Kressner, Daniel  
Steinlechner, Michael  
Uschmajew, Andre  
Date Issued

2014

Publisher

Siam Publications

Published in
SIAM Journal On Scientific Computing
Volume

36

Issue

5

Start page

A2346

End page

A2368

Subjects

ALS

•

DMRG

•

high-dimensional eigenvalue problems

•

LOBPCG

•

low-rank tensor methods

•

trace minimization

•

tensor train format

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
ANCHP  
Available on Infoscience
February 20, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/111188
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés