Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Molecular mechanism of NDMA formation from N,N-dimethylsulfamide during ozonation: Quantum chemical insights into a bromide-catalyzed pathway
 
research article

Molecular mechanism of NDMA formation from N,N-dimethylsulfamide during ozonation: Quantum chemical insights into a bromide-catalyzed pathway

Trogolo, Daniela  
•
Mishra, Brijesh Kumar  
•
Heeb, Michèle Bernadette  
Show more
2015
Environmental Science & Technology

During ozonation of drinking water, the fungicide metabolite NN-dimethyIsulfamide (DMS) can be transformed into a highly toxic product, N-nitrosodimethylamine (NDMA). We used quantum chemical computations and stopped-flow experiments to evaluate a chemical mechanism proposed previously to describe this transformation. Stopped-flow experiments indicate a pK(a) = 10.4 for DMS. Experiments show that hypobromous acid (HOBr), generated by ozone oxidation of naturally occurring bromide, brominates the deprotonated DMS- anion with a near-diffusion controlled rate constant (7.1 +/- 0.6 X 10(8) M-1 s(-1)), forming Br-DMS- anion. According to quantum chemical calculations, Br-DMS has a pK(a) similar to 9.0 and thus temains partially deprotonated at neutral pH. The anionic Br-DMS- bromamine can react with ozone with a high rate constant (105 2.5 M-1 s(-1)), forming the reaction intermediate (BrNO)(SO2)N(CH3)(2)(-). This intermediate resembles a loosely bound complex between an electrophilic nitrosyl bromide (BrNO) molecule and an electron-rich dimethylaminosulfinate ((SO2)N(CH3)(2)(-)) fragment, based on inspection of computed natural charges and geometric parameters. This fragile complex undergoes immediate (10(10 +/- 2.5) s(-1)) reaction by two branches: an exothermic channel that produces NDMA, and an entropy-driven channel giving non-NDMA products. Computational results bring new insights into the electronic nature, chemical equilibria, and kinetics of the elementary reactions of this pathway, enabled by computed energies of structures that are not possible to access experimentally.

  • Details
  • Metrics
Type
research article
DOI
10.1021/es504407h
Web of Science ID

WOS:000352659000021

Author(s)
Trogolo, Daniela  
Mishra, Brijesh Kumar  
Heeb, Michèle Bernadette  
von Gunten, Urs  
Arey, J. Samuel  
Date Issued

2015

Publisher

Amer Chemical Soc

Published in
Environmental Science & Technology
Volume

49

Issue

7

Start page

4163

End page

4175

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LMCE  
LTQE  
Available on Infoscience
February 16, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/110969
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés