ShapeNet: Convolutional Neural Networks on Non-Euclidean Manifolds

Feature descriptors play a crucial role in a wide range of geometry analysis and processing applications, including shape correspondence, retrieval, and segmentation. In this paper, we propose ShapeNet, a generalization of the popular convolutional neural networks (CNN) paradigm to non-Euclidean manifolds. Our construction is based on a local geodesic system of polar coordinates to extract "patches", which are then passed through a cascade of filters and linear and non-linear operators. The coefficients of the filters and linear combination weights are optimization variables that are learned to minimize a task-specific cost function. We use ShapeNet to learn invariant shape feature descriptors that significantly outperform recent state-of-the-art methods, and show that previous approaches such as heat and wave kernel signatures, optimal spectral descriptors, and intrinsic shape contexts can be obtained as particular configurations of ShapeNet.


Year:
2015
Keywords:
Laboratories:




 Record created 2015-02-02, last modified 2018-03-17

Preprint:
Download fulltextPDF
External link:
Download fulltextURL
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)