Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Asynchronous Decoding of LDPC Codes over BEC
 
conference paper

Asynchronous Decoding of LDPC Codes over BEC

Haghighatshoar, Saeid  
•
Karbasi, Amin  
•
Salavati, Amir Hesam  
2015
2015 IEEE International Symposium on Information Theory (ISIT)
IEEE International Symposium on Information Theory (ISIT)

LDPC codes are typically decoded by running a synchronous message passing algorithm over the corresponding bipartite factor graph (made of variable and check nodes). More specifically, each synchronous round consists of 1) updating all variable nodes based on the information received from the check nodes in the previous round, and then 2) updating all the check nodes based on the information sent from variable nodes in the current round. However, in many applications, ranging from message passing in neural networks to hardware implementation of LDPC codes, assuming that all messages are sent and received at the same time is far from realistic. In this paper, we investigate the effect of asynchronous message passing on the decoding of LDPC codes over a BEC channel. We effectively assume that there is a random delay assigned to each edge of the factor graph that models the random propagation delay of a message along the edge. As a result, the output messages of a check/variable node are also asynchronously updated upon arrival of a new message in its input. We show, for the first time, that the asymptotic performance of the asynchronous message passing is fully characterized by a fixed point integral equation that takes into account both the temporal and the spatial feature of the factor graph. Our theoretical result is reminiscent of the fixed point equation in traditional BP decoding. Surprisingly, our simulation results show that asynchronous scheduling outperforms tremendously the traditional BP in the finite block length regime by avoiding standard trapping sets.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Asynchronous Decoding of LDPC Codes over BEC.pdf

Access type

openaccess

Size

388.23 KB

Format

Adobe PDF

Checksum (MD5)

ed5a1457ef20b932ff09e630845fb9a3

Loading...
Thumbnail Image
Name

Erasure Decoding.ipynb

Access type

openaccess

Size

168.63 KB

Format

IPYNB

Checksum (MD5)

67d492eb4772779e97a3e2263c86a250

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés