Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Assessment of metabolic fluxes in the mouse brain in vivo using (1)H-[(13)C] NMR spectroscopy at 14.1 Tesla
 
research article

Assessment of metabolic fluxes in the mouse brain in vivo using (1)H-[(13)C] NMR spectroscopy at 14.1 Tesla

Xin, Lijing  
•
Lanz, Bernard  
•
Lei, Hongxia  
Show more
2015
Journal of Cerebral Blood Flow & Metabolism

(13)C magnetic resonance spectroscopy (MRS) combined with the administration of (13)C labeled substrates uniquely allows to measure metabolic fluxes in vivo in the brain of humans and rats. The extension to mouse models may provide exclusive prospect for the investigation of models of human diseases. In the present study, the short-echo-time (TE) full-sensitivity (1)H-[(13)C] MRS sequence combined with high magnetic field (14.1 T) and infusion of [U-(13)C6] glucose was used to enhance the experimental sensitivity in vivo in the mouse brain and the (13)C turnover curves of glutamate C4, glutamine C4, glutamate+glutamine C3, aspartate C2, lactate C3, alanine C3, γ-aminobutyric acid C2, C3 and C4 were obtained. A one-compartment model was used to fit (13)C turnover curves and resulted in values of metabolic fluxes including the tricarboxylic acid (TCA) cycle flux VTCA (1.05±0.04 μmol/g per minute), the exchange flux between 2-oxoglutarate and glutamate Vx (0.48±0.02 μmol/g per minute), the glutamate-glutamine exchange rate Vgln (0.20±0.02 μmol/g per minute), the pyruvate dilution factor Kdil (0.82±0.01), and the ratio for the lactate conversion rate and the alanine conversion rate VLac/VAla (10±2). This study opens the prospect of studying transgenic mouse models of brain pathologies.Journal of Cerebral Blood Flow & Metabolism advance online publication, 21 January 2015; doi:10.1038/jcbfm.2014.251.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

xin_13Cmouse_JCBFM_2015.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

521.45 KB

Format

Adobe PDF

Checksum (MD5)

82447c91626cc0a58a72cc0c939237a1

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés