Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Towards Convenient Calibration for Cross-Ratio based Gaze Estimation
 
conference paper not in proceedings

Towards Convenient Calibration for Cross-Ratio based Gaze Estimation

Arar, Nuri Murat  
•
Gao, Hua  
•
Thiran, Jean-Philippe  
2015
IEEE Winter Conference on Applications of Computer Vision (WACV)

Eye gaze movements are considered as a salient modality for human computer interaction applications. Recently, cross-ratio (CR) based eye tracking methods have attracted increasing interest because they provide remote gaze estimation using a single uncalibrated camera. However, due to the simplification assumptions in CR-based methods, their performance is lower than the model-based approaches [8]. Several efforts have been made to improve the accuracy by compensating for the assumptions with subject- specific calibration. This paper presents a CR-based automatic gaze estimation system that accurately works under natural head movements. A subject-specific calibration method based on regularized least-squares regression (LSR) is introduced for achieving higher accuracy compared to other state-of-the-art calibration methods. Experimental results also show that the proposed calibration method generalizes better when fewer calibration points are used. This enables user friendly applications with minimum calibration effort without sacrificing too much accuracy. In addition, we adaptively fuse the estimation of the point of regard (PoR) from both eyes based on the visibility of eye features. The adaptive fusion scheme reduces accuracy error by around 20% and also increases the estimation coverage under natural head movements.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PID3471457.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

Size

481.82 KB

Format

Adobe PDF

Checksum (MD5)

ba08084f6d09551d7f4f153c2420ec24

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés