Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Finite ion temperature effects on scrape-off layer turbulence
 
Loading...
Thumbnail Image
research article

Finite ion temperature effects on scrape-off layer turbulence

Mosetto, Annamaria
•
Halpern, Federico D.
•
Jolliet, Sébastien
Show more
2015
Physics of Plasmas

Ion temperature has been measured to be of the same order, or higher, than the electron temperature in the scrape-off layer (SOL) of tokamak machines, questioning its importance in determining the SOL turbulent dynamics. Here, we present a detailed analysis of finite ion temperature effects on the linear SOL instabilities, such as the resistive and inertial branches of drift waves and ballooning modes, and a discussion of the properties of the ion temperature gradient (ITG) instability in the SOL, identifying the gi 1⁄4 Ln=LTi threshold necessary to drive the mode unstable. The non-linear analysis of the SOL turbulent regimes by means of the gradient removal theory is performed, revealing that the ITG plays a negligible role in limited SOL discharges, since the ion temperature gradient is generally below the threshold for driving the mode unstable. It follows that the resistive ballooning mode is the prevailing turbulence regime for typical limited SOL parameters. The theoretical estimates are confirmed by non-linear flux-driven simulations of SOL plasma dynamics.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Mosetto2015.pdf

Access type

openaccess

Size

3.77 MB

Format

Adobe PDF

Checksum (MD5)

2972198a346abe4176e51639b59fbb9a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés