Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Advancing plasma turbulence understanding through a rigorous Verification and Validation procedure: a practical example
 
conference presentation

Advancing plasma turbulence understanding through a rigorous Verification and Validation procedure: a practical example

Ricci, Paolo
2014
56th Annual Meeting of the APS Division of Plasma Physics

The methodology used to assess the reliability of numerical simulation codes constitutes the Veri- fication and Validation (V&V) procedure. V&V is composed by two separated tasks: the verifica- tion process, which is a mathematical issue targeted to assess that the physical model is correctly solved, and the validation, which determines the consistency of the code results, and therefore of the physical model, with experimental data. In the present work, a V&V procedure, rigorous and unparalleled in plasma physics, is presented and applied showing, through a practical example, how it can advance our physics understanding of plasma turbulence. Bridging the gap between plasma physics and other scientific domains, in particular the computational fluid dynamics community, a rigorous methodology for the verification of a plasma simulation code is presented, based on the method of manufactured solution and Roaches grid converge index. This methodology assesses that the model equations are correctly solved, within the order of accuracy of the numerical scheme, and provides a rigorous estimate of the uncertainty affecting the numerical results. Two-dimensional and three-dimensional verified simulations of the basic plasma physics experiment TORPEX are then performed, and rigorously validated against the experimental data. The validation procedure allows progress in the understanding of the turbulent dynamics in TORPEX, by pinpointing the presence of a turbulent regime transition, due to the competition between the resistive and ideal interchange instabilities.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

NI2_ricci.pdf

Access type

openaccess

Size

14.62 MB

Format

Adobe PDF

Checksum (MD5)

233e722cef5444c7b2a78be694bc63aa

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés