Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. The reliability of the determination of tensor parameters by solid-state nuclear magnetic resonance
 
research article

The reliability of the determination of tensor parameters by solid-state nuclear magnetic resonance

Hodgkinson, P
•
Emsley, L  
1997
Journal of Chemical Physics

The accuracy of determination of tensor parameters measured using solid-state nuclear magnetic resonance is investigated. In particular, the reliability of the determination of the anisotropy and the asymmetry parameter of the chemical shift is calculated using the Cramer-Rao lower bounds. Minimizing this measure of the error as a function of an experimental parameter (in this case the spinning speed of the sample) enables the optimization of any given experiment. Hence, an optimum number of sidebands is found for which the determination of the anisotropy is most reliable. Comparision to the static limit shows that the reliability of the determination of the anisotropy is always greater in spinning experiments than in static experiments. An analogous analysis for the asymmetry parameter shows it to be consistently more reliably determined from a static spectrum. The sensitivity of the fitting to the simulation algorithm is found to become pronounced with slower speeds and static spectra, and a discussion of such systematic errors is provided. The reliability of the determination of dipolar or first-order quadrupolar tensors is also calculated, and we find that this presents a surprisingly different situation to that of the chemical shift. (C) 1997 American Institute of Physics.

  • Details
  • Metrics
Type
research article
DOI
10.1063/1.474844
Author(s)
Hodgkinson, P
Emsley, L  
Date Issued

1997

Publisher

AMER INST PHYSICS

Published in
Journal of Chemical Physics
Volume

107

Issue

13

Start page

4808

End page

4816

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LRM  
Available on Infoscience
January 8, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/110159
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés